

Cross-Country Sit Skiing: prominence of pushing poles gesture

Stefano PASTORELLI Giulia LISCO Laura GASTALDI

Politecnico di Torino

Department of Mechanical and Aerospace Engineering

Summary

- cross-country sit-sky
- tests
- subjects & materials
- biomechanical model
- results
- discusison
- conclusions

Double Poling in cross-country sit ski

Progression achieved by pushing symmetrically on two hand-held poles.

Pushing poles gesture (PPG) is similar to double poling (DP) technique adopted by standing crosscountry skiers

Tests

FIELD TESTS DURING COMPETITION

- outdoor video capture environment conditions unstructured field weather conditions
 competition contest
 - marker-less analysis not repeatable
- \checkmark elite athletes

Tests

POLITECNICO DI TORINO Dipartimento di Ingegneria Meccanica ed Aerospaziale

✓ video-recording of the push gesture during Paralympics competition

✓ marker-less motion analysis

1-km sprint race (qualification semifinal and final) rectilinear segment with 2% slope
2-D kinematic analysis

Research financially supported by **International Paralympic Committee**

Subjects & Materials

Dipartimento di Ingegneria Meccanica ed Aerospaziale

VIDEO CAPTURE SYSTEM:

 Cameras: Basler Scout scA640-120fc 120 fps at full resolution (659x490 pixel) 1/4" CCD sensor color FireWire interface Synchronization via external trigger signal Power supply over FireWire cable

✓ Lents: Pentax H6Z810 Manual Zoom Focal length 8-48 mm Iris range F1.0-22

✓ PC Laptop Celsius Mobile H270

✓ SW Simi Motion3D - 3D Motion Analysis System

Subjects & Materials

Dipartimento di Ingegneria Meccanica ed Aerospaziale

VIDEO CAPTURE SYSTEM:

 Cameras: Basler Scout scA640-120fc 120 fps at full resolution (659x490 pixel) 1/4" CCD sensor color FireWire interface Synchronization via external trigger signal Power supply over FireWire cable

✓ Lents: Pentax H6Z810 Manual Zoom Focal length 8-48 mm Iris range F1.0-22

✓ PC Laptop Celsius Mobile H270

✓ SW Simi Motion3D - 3D Motion Analysis System

Z	women	n. athletes 15	%	age 34,3	s.d 8,6	
WOME	LW 10 LW10.5 LW 11 LW 11.5 LW 12	4 1 3 2 5	27% 7% 20% 13% 33%	39,0 24,0 36,3 31,0 32,6	6,8 6,4 2,8 12,0	MEN

	men	n. athletes 35	%	age 36,9	s.d 8,9	
MEN	LW 10 LW10.5 LW 11 LW 11.5 LW 12	3 2 10 5 15	9% 6% 29% 14% 43%	42,0 28,0 40,8 38,2 34,1	4,4 5,7 8,3 9,1 9,2	

PARTECIPANTS

Biomechanical Model

POLITECNICO DI TORINO Dipartimento di Ingegneria Meccanica ed Aerospaziale

seven anatomical points,

(head temple, shoulder, elbow, wrist, hip, knee and ankle left joints)

Biomechanical Model

Di TORINO Dipartimento di Ingegneria Meccanica ed Aerospaziale

seven anatomical points,

(head temple, shoulder, elbow, wrist, hip, knee and ankle left joints)

four technical additional points: (three to identify pole and one on sledge)

Biomechanical Model

POLITECNICO DI TORINO Dipartimento di Ingegneria Meccanica ed Aerospaziale

seven anatomical points,

(head temple, shoulder, elbow, wrist, hip, knee and ankle left joints)

four technical additional points: (three to identify pole and one on sledge)

angle convention

Results

PPG cycle CC sit-skiers

PP Poling Phase

maximum body and arm extension (maximum wrist ground elevation) maximum sledge velocity

TP Transition Phase

maximum sledge velocity - maximum elbow extension

RP Recovery Phase

maximum elbow extension - maximum body and arm extension

a) stick diagram with respect world reference frame;
b) sledge velocity;
c) elbow angle;
d) wrist vertical ground elevation;
e) pole angle;
f) shoulder angle;
g) trunk angle.

Results

POLITECNICO DI TORINO Dipartimento di Ingegneria Meccanica ed Aerospaziale

LW10 athlete

LW12 athlete (bilateral amputee)

LW12 athlete (monolateral amputee)

a) stick diagram; b) wrist, elbow and shoulder trajectories

SLEDGE VELOCITY

Boninger, Met al. (2000). Manual wheelchair push rim biomechanics and axle position, *Archive of Physical Medicine Rehabilitation*; Vol. 81 Lentino, C., et al. (2008) Analisi cinematica della spinta in carrozzina: proposta di modello sperimentale. *Giornale It.. Med. Riab.*; 23(2)

SLEDGE VELOCITY

deceleration during the PP plateau at the end of the PP

snow-pole contact non effective pole pushing angle

85% women have this trend 87.5% men have this trend

POLITECNICO DI TORINO Dipartimento di Ingegneria Meccanica ed Aerospaziale

Inertial effect

acceleration early stage of PP with no pole-snow contact

Forearm kinematics

$$\begin{aligned} \vec{p}_{CMf} &= \vec{p}_E + f \cdot \mathbb{I}(\vec{p}]_W - \vec{p}_E) \\ \vec{v}_{CMf} &= \vec{v}_E + f \cdot \left[\vec{w}_f \times \mathbb{I}(\vec{p}]_W - \vec{p}_E) \right] \\ \vec{a}_{CMf} &= \vec{a}_E + f \cdot \left[\vec{w}_f \times \mathbb{I}(\vec{p}]_W - \vec{p}_E) \right] + f \cdot \left[\vec{w}_f \times \left[\vec{w}_f \times \mathbb{I}(\vec{p}]_W - \vec{p}_E) \right] \end{aligned}$$

Upperarm kinematics

$$\begin{aligned} \vec{p}_{CMu} &= \vec{p}_S + u \cdot (\vec{p}_E - \vec{p}_S) \\ \vec{v}_{CMu} &= \vec{v}_S + u \cdot [\vec{w}_u \times (\vec{p}_E - \vec{p}_S)] \\ \vec{a}_{CMu} &= \vec{a}_s + u \cdot [\vec{w}_u \times (\vec{p}_E - \vec{p}_S)] + u \cdot [\vec{w}_u \times (\vec{p}_E - \vec{p}_S)] \end{aligned}$$

Masses

$$\begin{split} m_u &= 0.022 \cdot m_t + \left(\frac{4.76}{g}\right) \qquad m_f = 0.013 \cdot m_t + \left(\frac{2.41}{g}\right); \\ m_a &= m_f + m_u \end{split}$$

$$\mathbf{r_u} = \frac{\mathbf{m_u}}{\mathbf{m_a}} \quad r_f = \frac{m_f}{m_a}$$

Terms	Description
р _s	Position vector of Sh joint
p _E	Position vector of EI joint
р _W	Position vector of Wr joint
р _{сМи}	Position vector of CM _u joint
р _{смf}	Position vector of CM _f joint
V _S	Velocity vector of Sh joint
V _E	Velocity vector of EI joint
V _{CMu}	Velocity vector of CM _u joint
V _{CMf}	Velocity vector of CM _f joint
a _s	Acceleration vector of Sh joint
a _e	Acceleration vector of El joint
a _{CMu}	Acceleration vector of CM _u joint
a _{cMf}	Acceleration vector of CM _f joint
W _f	Angular velocity of forearm link
w _u	Angular velocity of upper-arm link
f	Angular acceleration of forearm link
u	Angular acceleration of upper-arm link

POLITECNICO DI TORINO Dipartimento di Ingegneria Meccanica ed Aerospaziale

$$\vec{f}_{i} = \frac{\vec{F}_{i}}{m_{a}} = \left[\left(\vec{r_{u}} \cdot \vec{a}_{CMu} \right) + \left(\vec{r_{f}} \cdot \vec{a}_{CMf} \right) \right]$$

$$\mathbf{fi}_{x} = -\left[\left(\mathbf{r}_{u} \cdot \mathbf{a}_{CMu}\right) + \left(\mathbf{r}_{f} \cdot \mathbf{a}_{CMf}\right)\right] \cdot \mathbf{a}_{CMf}$$

POLE ANGLE

LW12 women

POLE LENGTH

A

CODICE ATLETA	BASTONC INO	H SPALLA	H ATLETA	H SLITTA	B/H	Δh
W01	105	76	94	15	1.38	11
W02	99	77	92	18	1.07	7
W03	103	86	108	22	0.95	-5
W04	122	94	116	31	1.05	6
W05	94	74	88	10	1.06	6
W06	95	77	93	23	1.02	2
W07	129	103	123	50	1.04	6
W08	160	127	149	47	1.07	11
W09	104	88	110	35	0.94	-6
W10	119	99	119	38	1.00	0
W11	93	77	95	21	0.97	-2

CODICE ATLETA	BASTONCINO	H SPALLA	H ATLETA	H SLITTA	B/H	Δh
M01	136	103	133	34	1.02	3
M02	133	106	127	30	1.04	6
M03	145	108	128	32	1.34	17
M04	120	103	113	32	1.06	7
M05	104	94	110	36	0.89	-6
M06	129	102	112	33	1.15	17
M07	116	97	113	34	1.19	3
M08	150	114	137	25	1.09	13
M09	126	110	135	126	0.93	-9
M10	111	91	102	27	1.21	9
M11	112	96	110	33	1.16	2
M12	160	118	148	38	1.35	12
M13	151	108	135	39	1.11	16

Conclusions

• check the feasibility of the motion capture during a contest

velocity:

most of the athletes present some similar features; residual motor potential influences shape and duration of the deceleration more performing athletes reach maximum sledge velocity when the arm is in a posterior position respect the trunk, increasing PP

a "kneeling" position allows a positive gradient of velocity during PP arm inertia play an important role in propulsion

• pole

ratio pole/height on sledge increases as increases the seat angle respect the vertical plane. In general with curled legs ratio < 1.

LW 10 class pole angles in PP are heterogeneous, while for LW 11 and LW12 angles are more homogeneous, even if there are some difference between man and women

POLITECNICO DI TORINO Dipartimento di Ingegneria Meccanica ed Aerospaziale

Thank you!

